CAR T-cell Therapy Lymphoma: The Good, the Bad and the Exciting

Celebrating a Second Chance at Life Survivorship Symposium

April 29 – May 5, 2023

Michael Tees, MD, MPH
Colorado Blood Cancer Institute,
part of the Sarah Cannon Cancer Institute at
Presbyterian/St. Luke’s Medical Center

Learning Objectives

• Understand rationale for using CAR T-cell therapy in lymphoma
• Know the steps involved in undergoing CAR T-cell therapy
• Know the short-term side effects/toxicities of CAR T-cell therapy
• Know the impact on quality of life
• Understand the longer-term side effects and outcomes of CAR T-cell therapy
Hematopoiesis = blood cell growth

Other Treatment: Autologous Stem Cell Transplant

- High dose chemotherapy is the treatment (i.e. BEAM, Melphalan)
- The major side effect of the chemotherapy: it eradicates the hematopoietic stem cells
 - Therefore, we must collect stem cells prior to the treatment
- Correct term: High dose chemotherapy followed by stem cell rescue
- What if you didn’t respond to chemotherapy to begin with?
- What if you had a recurrence after autologous stem cell transplant?
Other Treatment: Allogeneic Stem Cell Transplant

- We first eradicate immune system with “conditioning therapy”. Depending on intensity of the conditioning, there is added anti-malignancy benefits. Then we infuse donor stem cells into the recipient (the patient).
- Allogeneic transplant = 25% mortality at one year
- What we want: graft vs malignancy (also known as graft vs leukemia or graft vs tumor). We want the donor’s immune system to recognize the cancer as foreign/bad
- What we don’t want: graft vs host disease (GVHD)
- What is the source of graft vs malignancy (and GVHD): T-cells!

Who gets CAR T-cell therapy?

- Available and approved by the FDA:
 - Refractory acute lymphoblastic leukemia (ALL)
 - Multiple myeloma after 4+ of therapy
 - Diffuse large B-cell lymphoma + other aggressive B-cell lymphomas not responding to first-line therapy (refractory) or relapse of disease within 1 year of first-line therapy = second line therapy
 - Diffuse large B-cell lymphoma + other aggressive B-cell lymphomas in patients who are refractory to 2+ prior lines of therapy
 - Follicular lymphoma after 2+ lines of therapy.
 - Mantle cell lymphoma after 2+ lines of therapy
Lymphoma CAR T-cell Therapies

- **YESCARTA® (axicabtagene ciloleucel or “axi-cel”)**
 - Aggressive B-cell lymphomas, follicular lymphoma
- **KYMRIAH® (tisagenlecleucel or “tisa-cel”)**
 - Aggressive B-cell lymphomas, follicular lymphoma
- **BREYANZI® (lisocabtagene maraleucel or “liso-cel”)**
 - Aggressive B-cell lymphomas*
- **TECARTUS® (brexucabtagene autolecel or “brexu-cel”)**
 - Mantle cell lymphoma

Why Get CAR T-cell Therapy?

- Recall:
 - What if you didn’t respond to chemotherapy to begin with?
 - What if you had a recurrence after autologous stem cell transplant?
 - Allogeneic transplant = 25% mortality at one year
- In aggressive lymphomas (like DLBCL), an autologous stem cell transplant is not as effective as CAR T-cell therapy when the cancer has returned within 12 months of induction therapy.
- For follicular lymphoma, there are about 20% of patients who have a more active lymphoma, despite being called “indolent”. Many times, the treatments become less effective or don’t last as long.
- For mantle cell lymphoma, many times, the treatments become less effective or don’t last as long.
What is the Goal of CAR T-cell Therapy?

• Cure
• Success rate varies based on disease and prior therapies.
• Higher likelihood of longer-term disease-free survival:
 • If you have less disease before CAR T-cell therapy
 • If you a have a complete response by PET/CT scan at D+30
 • If recurrence hasn't occurred by 2 years

What is the Plan with CAR T-cell Therapy?

• T-cells can’t recognize the malignancy as "bad", so let’s re-engineer some so they know what they need to do: kill the cancer
• CAR = chimeric antigen receptor
 • All approved products for lymphoma are engineered to target CD19, a marker on B-cells
• Current process for approved CAR T-cell therapies:
 • Step 1: insurance approval and production request: 10-21 days
 • Step 2: T-cell collection -> growth: 14-42 days
 • Step 3: Low dose (lymphodepleting) chemotherapy: 2-3 days
 • Step 4: CAR T-cell infusion: 1 day
 • Step 5: monitoring for side effects/toxicities: 30 days
Steps to Make CAR T-cells

Step 1: T-cell collection (leukapheresis)
Step 2: T-cell selection + activation + enrichment
Step 3: viral vector transfer of CAR to T-cells
Step 4: CAR T-cell expansion
Step 5: CAR T-cell administration

While You Are Waiting

- 14 - 42 days for CAR T-cell manufacturing
- May need disease control. This is called bridging therapy
- Then, approximately 4-7 days prior to CAR T-cell infusion, lower dose (lymphodepleting) chemotherapy is necessary
 - Goal is to weaken the immune system in order to accept the CAR T-cells back into the body
Days 0 - 30

• CAR T-cell infusion (Day 0)
 • inpatient versus outpatient
• Close monitoring for side/effects and toxicities (Days 0 - 30)
 • infection
 • cytokine release syndrome
 • neurotoxicity
 • if not in hospital, you will stay close to the treatment center

Days 0 – 30: Infection

• Caused by lymphodepleting chemotherapy
• Bacterial and/or fungal infection risk during neutropenia
 • Typically, this is Day 0 through Day 14
• You will be on an anti-viral, antibiotic, and anti-fungal agent
• But a fever might not be infection…
Day 0 – 30: Cytokine release syndrome (CRS)

- As T-cells expand in the body, they release cytokines, which are natural chemicals the immune system uses to communicate.
- BIG 3 symptoms:
 - Fever
 - Low blood pressure (hypotension)
 - Shortness of breath (hypoxemia)
- Those with a higher tumor burden prior to CAR T-cell therapy have an increased risk of CRS.
- Risk also depends on the CAR T-cells used (i.e. axi-cel, liso-cel).

Day 0 – 30: Cytokine release syndrome (CRS)

- Will you get it? It depends, but likely you will.
 - Diffuse large B-cell lymphoma (DLBCL)/Follicular lymphoma: 20-80%
 - Mantle cell lymphoma: 80%
- CRS grade 1: fever only
- CRS grade 2: fever + low blood pressure and/or low oxygen saturation
- CRS grade 3-4: need blood pressure supporting medications and/or advanced breathing support
Day 0 – 30: Cytokine release syndrome (CRS)

• Tends to begin on days 3-5 and last for 5-10 days, but there is wide variability in if and when it presents, how severe it is, and how long it lasts
• Treatment: anti-cytokine therapy (i.e. tocilizumab) and steroids
• CRS is reversible
• There can be secondary effects:
 • low blood pressure can lead to kidney injury
 • steroids can increase the risk of infection
 • deconditioning

Day 0 - 30: Neurotoxicity (ICANS)

• Neurotoxicity is driven by the same process as CRS:
 • cytokines can cross the blood-brain barrier and lead to central nervous system side effects
 • ICANS = immune effector cell-associated neurotoxicity syndrome
• Broad signs/symptoms: tremors, forgetfulness, difficulty with comprehension, seizures
• You will get frequent and standardized assessments to monitor for changes
Day 0 - 30: Neurotoxicity (ICANS)

• Will you get it? It depends…
 • Diffuse large B-cell lymphoma (DLBCL): 30-60%
 • Follicular lymphoma: 20-60%
 • Mantle cell lymphoma: 80%

Other Toxicities: Financial

• Cost of the cell product: $400,000 - 500,000
• Cost of the supportive care: > $1,000,000
• Commercial insurance – less of an issue
• Medicare – reimbursement for cost of care is convoluted
• Medicaid – state specific, but generally inconsistent and inadequate reimbursement

- Underreported – but mainly this affects concentration, short term memory
- Advised not to drive for 2 months after infusion
- In patients with this “brain fog”, returning to work has been difficult
- A newer understanding of a “peripheral” communication between cytokines and the immune cells that cross over the blood-brain barrier
- This tends to resolve

Day 30+: Late Effects – Low Blood Counts

- “Real world data” demonstrate nearly 30% of patients have prolonged cytopenia (low blood counts)
- *Maybe* with CAR T-cell persistence
- Resolves over time
Day 30+: Late Effects – Infection

- "Prolonged infection risk"
 - Unique to CD19-directed CAR T-cell therapies
 - CD19 is also located on memory B-cells
 - Lack of memory B-cells weakens the immune system to fight infection
 - *May be* associated with the persistence of CAR T-cells after therapy

Day 30+: Late Effects – Prevent Infection

- **Shingles (VZV):** continue on an anti-viral through at least 12 months post-CAR T-cell therapy

- **Pneumocystis pneumonia (PJP):** continue on antibiotic through at least 12 months post-CAR T-cell therapy

- **Low immunoglobulins (IgG) = hypogammaglobulinemia**
 - Increases risk of respiratory viral infections
 - IVIG can be administered

- **Decreased neutrophil count = neutropenia**
 - G-CSF can be administered
Day 30+: Vaccinations

- COVID re-vaccination(s) is advised
- All other vaccinations: institution-specific
- If re-vaccination is advised, the immune system may be too compromised early after the treatment to adequately mount a response for immunization

Day 30+: Other Late Effects

- **Second Malignancies**
 - To date, most patients have required multiple lines of chemotherapy prior to CAR T-cell therapy
 - 7% risk of skin cancers (non-melanoma)
 - 5% risk of myelodysplastic syndrome (MDS)
- **Neurologic**
 - Rare, and not clear if reported events are truly associated with therapy
 - In a small number of patients, neurotoxicity from initial therapy has reported to last months
Quality of Life

• Like many therapies, there will be a short-term impact on your quality of life
 • Hospitalizations and/or daily clinic visits
 • Blood product transfusions
 • Infections and infection risk reduction
 • Toxicity (i.e. CRS and/or neurotoxicity)
• Intermediate/longer term
 • Infections and infection risk
 • Psychosocial
 • Neurological

Decreasing the Side Effects

• Decreasing both the short term and the late side effects is important
 • Outpatient versus inpatient
 • Prophylactic steroids on Days 0-2 of CAR T-cell therapy
 • Has been shown to reduce severity of CRS/ICANS in lymphoma
 • Education
 • Clinical trials
Where is the CAR Driving to Next?

• **Almost there…**
 - Chronic lymphocytic leukemia/Small lymphocytic leukemia (CLL/SLL)
 - Hodgkin lymphoma
 - "Solid" tumors: glioblastoma, hepatocellular carcinoma, prostate cancer

• **Lost the CAR keys…(we still have a way to go):**
 - Myelodysplastic syndrome (MDS)
 - Acute Myeloid Leukemia (AML)
 - Other myeloid diseases (i.e. myelofibrosis)
 - Other "solid" tumors

The Future: When CARs Fly…

• Within-patient CAR T cell expansion
• CAR NK cell therapy
• CAR monocyte therapy
• Newer CAR T or NK cell cancer targets
• "off-the-shelf" (allogeneic) CAR T-cell or NK-cell therapy
• Gene re-engineering to remove the unnecessary drivers of toxicity
Not So Fast: “Solid” Tumors and CAR T-cell Therapy

- Some targets for CAR T-cell therapy may not be unique to a cancer cell, these are termed “off-target” effects.
- Different diseases have different supporting cells that allow it to grow. This is called the tumor microenvironment and is unfriendly to immune cells.
- The CAR T-cells need to survive the environment while also not getting exhausted in the process.
- Need the right target, need the environment more welcoming, and need the T-cells to stick around and not get tired.

Thanks!

michael.tees@healthonecares.com
@MikeTeesMD @CBCIDocs
ColoradoBlood.com
QUESTIONS?

Michael Tees, MD, MPH
Colorado Blood Cancer Institute,
part of the Sarah Cannon Cancer Institute
at Presbyterian/St. Luke's Medical Center

LET US KNOW HOW WE CAN HELP YOU

Visit our website: bmtinfonet.org
Email us: help@bmtinfonet.org
Phone: 888-597-7674 or 847-433-3313